Satellite radar data reveal short-term pre-explosive displacements and a complex conduit system at Volcán de Colima, Mexico

نویسندگان

  • Jacqueline T. Salzer
  • Mehdi Nikkhoo
  • Thomas R. Walter
  • Henriette Sudhaus
  • Gabriel Reyes-Dávila
  • Mauricio Bretón
  • Raúl Arámbula
چکیده

*Correspondence: Jacqueline T. Salzer, Department 2: Physics of the Earth, GFZ German Research Center for Geosciences, Telegrafenberg, 14473 Potsdam, Germany e-mail: [email protected] The geometry of the volcanic conduit is a main parameter controlling the dynamics and the style of volcanic eruptions and their precursors, but also one of the main unknowns. Pre-eruptive signals that originate in the upper conduit region include seismicity and deformation of different types and scales. However, the locality of the source of these signals and thus the conduit geometry often remain unconstrained at steep sloped and explosive volcanoes due to the sparse instrumental coverage in the summit region and difficult access. Here we infer the shallow conduit system geometry of Volcán de Colima, Mexico, based on ground displacements detected in high resolution satellite radar data up to 7 h prior to an explosion in January 2013. We use Boundary Element Method modeling to reproduce the data synthetically and constrain the parameters of the deformation source, in combination with an analysis of photographs of the summit. We favor a two-source model, indicative of distinct regions of pressurization at very shallow levels. The horizontal location of the upper pressurization source coincides with that of post-explosive extrusion. The pattern and degree of deformation reverses again during the eruption; we therefore attribute the displacements to transient (elastic) pre-explosive pressurization of the conduit system. Our results highlight the geometrical complexity of shallow conduit systems at explosive volcanoes and its effect on the distribution of pre-eruptive deformation signals. An apparent absence of such signals at many explosive volcanoes may relate to its small temporal and spatial extent, partly controlled by upper conduit structures. Modern satellite radar instruments allow observations at high spatial and temporal resolution that may be the key for detecting and improving our understanding of the generation of precursors at explosive volcanoes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of structural controls in an active lava dome with high resolution DEMs: Volcán de Colima, Mexico

[1] Monitoring the topography of active lava domes is critical for detecting changes that may trigger or influence collapse or explosive activity. Internal dome structure and conditions are more difficult to elucidate, but also play vital roles. Here, we describe the exposure (following an explosion) of significant scarps in the active dome at Volcán de Colima, Mexico, that are interpreted as e...

متن کامل

Tree growth response to the 1913 eruption of Volcán de Fuego de Colima, Mexico

The impact of volcanic eruptions on forest ecosystems can be investigated using dendrochronological records. While long-range effects are usually mediated by decreased air temperatures, resulting in frost rings or reduced maximum latewood density, local effects include abrupt suppression of radial growth, occasionally followed by greater than normal growth rates. Annual rings in Mexican mountai...

متن کامل

Fracture and compaction of andesite in a volcanic edifice

The failure mode of lava-dilatant or compactant-depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under which it deforms. The failure mode for edifice host rock has attendant implications for the structural stability of the edifice and the efficiency of the sidewall outgassing of the volcanic conduit. In this contribution, we present a syst...

متن کامل

Determination of the displacement rate of the Masouleh landslide for management of landslide risk by Radar Interferometry

One of the most common natural phenomena occurring in mountainous regions of the world is landslide which causes critical damages and is considered as a natural disaster.  Iran is a country which annually suffers from this disaster and its consequent damage of about 500 billion Rial. Over the last 15 years, an increasing number of researches have aimed to demonstrate the applicability of the im...

متن کامل

Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series

[1] We use 2007–2011 Advanced Land Observing Satellite (ALOS) data to perform an arc-wide interferometric synthetic aperture radar (InSAR) time series survey of the Trans-Mexican Volcanic Belt (TMVB) and to study time-dependent ground deformation of four Indonesian volcanoes selected following the 2007–2009 study of Chaussard and Amelung (2012). Our objectives are to examine whether arc volcano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014